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The purpose of this work is to develop an application for 3D viewing of weather radar data. 
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Abstract
There are 12 weather radars operated jointly by smhi and the Swedish 
Armed Forces in Sweden. Data from them are used for short term 
forecasting and analysis. The traditional way of viewing data from the 
radars is in 2D images, even though 3D polar volumes are delivered 
from the radars. The purpose of this work is to develop an application 
for 3D viewing of weather radar data.

There are basically three approaches to visualization of volumetric 
data, such as radar data: slicing with cross-sectional planes, surface 
extraction, and volume rendering. The application developed during 
this project supports variations on all three approaches. Different 
objects, e.g. horizontal and vertical planes, isosurfaces, or volume ren-
dering objects, can be added to a 3D scene and viewed simultaneously 
from any angle. Parameters of the objects can be set using a graphical 
user interface and a few different plots can be generated.

Compared to the traditional 2D products used by meteorologists 
when analyzing radar data, the 3D scenes add information that makes 
it easier for the users to understand the given weather situations. 
Demonstrations and discussions with meteorologists have rendered 
positive reactions. The application will be installed and evaluated at 
Arlanda airport in Sweden.



1 Introduction 1
1.1 Background 1
1.2 Purpose 1
1.3 Order of work 1
1.4 Outline of this thesis 2

2 Introduction to weather radars 5
2.1 Background 5
2.2 Radar hardware 5

2.2.1 The transmitter 6
2.2.2 The antenna 7
2.2.3 The waveguide 8
2.2.4 The transmit/receive switch and the receiver 8

2.3 Radar parameters 8
2.4 The radar equation 10
2.5 Doppler velocity measurements 12
2.6 Radar data 13
2.7 Range, height, and distance 15

3 RAVE - current and future use 19
3.1 Background 19
3.2 System design 19

3.2.1 Graphical user interface 20
3.3 Products from 3D radar data 21

3.3.1 The PPI product 21
3.3.2 The CAPPI product 22
3.3.3 The PCAPPI product 23
3.3.4 The RHI product 24
3.3.5 The VAD product 25

3.4 RAVE users 26

4 Visualization of volumetric data 29
4.1 Introduction 29
4.2 Polar and cartesian volumes 30

4.2.1 Gaussian splatting 30
4.2.2 Shepard’s method 30

Table of contents



4.3 Different approaches 31
4.4 Interpolation 32

4.4.1 Nearest neighbour interpolation 32
4.4.2 Trilinear interpolation 32

4.5 Slicing techniques 33
4.6 Surface rendering techniques 34

4.6.1 The marching cubes algorithm 34
4.7 Volume rendering techniques 36

4.7.1 Object-order techniques 37
4.7.2 Image-order techniques 38

4.8 Shading 41
4.8.1 Polygon shading 42

5 Implementation 45
5.1 Visualization software 45

5.1.1 Visual programming systems 46
5.1.2 The Visualization Toolkit, VTK 49
5.1.3 3D graphics APIs 49

5.2 Choice of software 49
5.3 Software design 50
5.4 Visualization objects 52

5.4.1 The topography object 52
5.4.2 The radar, bounding box and axis objects 52
5.4.3 The elevation surface object 53
5.4.4 The RHI object 54
5.4.5 The CAPPI object 55
5.4.6 The glyphs object 56
5.4.7 The winds object 57
5.4.8 The VAD object 57
5.4.9 The isosurface object 58
5.4.10 The volume rendering object 59
5.4.11 The radar ray object 61

6 Evaluation and conclusions 63
6.1 Introduction 63
6.2 Evaluation 63

6.2.1 Usefulness 63
6.2.2 Performance 65

6.3 Future improvements 66
6.4 Conclusions 67

7 Resources 69
7.1 Books and articles 69
7.2 Internet 70

A Class Diagrams 71



Figure 1. This is what a radar looks like from the outside. This one is positioned 
near the southern tip of Sweden’s largest island, Gotland. 6

Figure 2. Simple block diagram of a radar. (Adapted from Rinehart, 1991) 7
Figure 3. The surface generated by a radar scan when the elevation angle is held 

constant and the azimuth angle varies from 0 to 360 degrees. 14
Figure 4. Range, height, and distance. 16
Figure 5. The basic system design in RAVE. 20
Figure 6. A PPI image and the main graphical user interface in RAVE. 22
Figure 7. Generating a CAPPI image. The output image is orthogonal to the 

paper. 23
Figure 8. A CAPPI (left) and a PCAPPI (right) image, showing data from the 

same location, time, and altitude (2 500 metres). 24
Figure 9. Generating a RHI image. The output image is parallel to the paper. 24
Figure 10. VAD circles. 25
Figure 11. Velocity/azimuth display of the Doppler velocity along a VAD circle.26
Figure 12. Pixels and voxels. 29
Figure 13. Nearest neighbour interpolation. 32
Figure 14. Trilinear interpolation. 33
Figure 15. The marching cubes. 36
Figure 16. Object-order volume rendering (forward mapping). The volume is 

transformed and mapped into image space. 37
Figure 17. Image-order volume rendering (inverse mapping). The image plane is 

transformed and mapped onto the volume. 39
Figure 18. Perspective ray casting. 40
Figure 19. Block diagram of a typical visualization system. 46
Figure 20. IRIS Explorer user interface. 48
Figure 21. Basic system design. 50
Figure 22. Main GUI screenshot when a few objects have been added. 51
Figure 23. Topography, radar, bounding box, and height axis objects. 53
Figure 24. Creating an elevation surface. Radar as seen from above. 54
Figure 25. A range/height indicator, or rhi, object, and its manager. 55
Figure 26. A semitransparent CAPPI object and its manager. 56
Figure 27. A glyphs object. 57
Figure 28. A winds object, as seen from above. 58

List of figures



Figure 29. A VAD object. 58
Figure 30. Two isosurface objects, with isovalues 14.5 and 18.5 dBZ for outer and 

inner surface, respectively. 59
Figure 31. The volume rendering manager. 60
Figure 32. A volume rendering object. 61
Figure 33. A radar ray object and its manager. 61
Figure 34. Graphical user interface class diagram. 72
Figure 35. Visualization objects class diagram. 75





Table 1. Radar bands and their frequencies and wavelengths. From Rinehart 
(1991). Visible light wavelegths range from 400 to 700 nm. 9

Table 2. Two different computer configurations tested with RAVE. 65

List of tables





1 of 76

1
Introduction

1.1 Background
Swedish Meteorological and Hydrological Institute, smhi, runs a 
network of 12 weather radars together with the Swedish Armed 
Forces. Data from them are used for short term weather forecasting 
and analysis; for detecting wind speeds and directions as well as rain 
fall amounts. The radars deliver data in the form of 3D polar volumes 
four times an hour, day and night, every day of the year. In order to 
meet the demand for a user friendly tool to visualize and analyse the 
data, the development of a software system called rave (which is an 
abbreviation for Radar Analysis and Visualization Environment) was 
initiated in 1996. From the beginning rave was designed to, among 
other things, “create and visualize arbitrary 2D products based on 3D 
data” and to be able to “render 3D views of polar and cartesian volume 
data with and without backdrops” (Bolin & Michelson, 1996). During 
1997 a first version of rave was implemented that included basic 
functionality but it was not able to render any 3D views - neither is 
the current version of rave. This project aims to fill this hole.

1.2 Purpose
The purpose of this work is to design and implement a generic, 
object-oriented application for 3D visualization of weather radar data. 
The application should be integrated with existing software.

1.3 Order of work
This project spans 20 weeks, starting September 2001. During this 
period of time, the following tasks should be completed:
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1. Literature studies. Searching for and reading some of what has 
been written about 3D visualization of volumetric data in general, 
and radar data in particular.

2. User interviews. Finding out what features the users of the applica-
tion want.

3. Data analysis. Investigating the nature of weather radar data.

4. Platform comparison. Comparing some software platforms and 
deciding which one is most suitable for the purpose.

5. Experimental programming. Learning to develop software using 
the chosen software environment.

6. Implementation of basic features. A standard pc workstation 
should be used and the performance needs to be reviewed before 
any advanced features, such as rendering sequences of radar data, 
are implemented.

7. Implementation of advanced features, given the limited time of the 
project.

8. Evaluation.

1.4 Outline of this thesis
Chapter 2, Introduction to weather radars, treats basic theory of 
weather radars for the reader who is not familiar with the subject. It 
describes the nature of the data delivered from a radar.

Chapter 3, RAVE - current and future use, includes an overview of the 
functionality in the current version of rave. There are also excerpts 
from the original design, in which it was stated what 3D graphics 
capabilities rave should have. Some common (2D) products that 
rave is able to generate are presented, as well as some that are added 
with this project.

Chapter 4, Visualization of volumetric data, describes some different 
methods and aspects of visualization of 3D data in a 2D image.

Chapter 5, Implementation, starts with a description and comparison 
of some conceivable software platforms. A platform is chosen and 
some design and implementation details follow.

Chapter 6, Evaluation and conclusions, finally evaluates the work and 
suggests areas of future research.
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There is also an appendix: Appendix A, Class diagrams. This appendix 
contains a couple of class diagrams and textual descriptions of these.
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2
Introduction to
weather radars

2.1 Background
Radar is an acronym for radio detection and ranging. Radar devices 
transmit electromagnetic waves, receive echoes from targets in the 
surroundings and determine various things about the targets from the 
characteristics of the received echo signals. Radar technology was 
developed primarily before and during the Second World War. Back 
then, the main goal was to scan the air for enemy airplanes. Radar 
technology is still being used for aircraft detection but nowadays radar 
is also used for a variety of other purposes - one of which is for detec-
tion of severe weather, including heavy thundershowers, hail, torna-
does, hurricanes and strong wind storms.

This chapter will give a brief overview of the components and impor-
tant parameters a radar system and an equally brief discussion of the 
radar equation. This equation describes the amount of power that is 
received back at the radar in terms of wavelength, particle size and a 
few other things. Finally, something is told about the data delivered 
from a typical radar in the Swedish network.

2.2 Radar hardware
From the outside, a radar looks as shown in Figure 1. Its appearance is 
dominated by the protective dome, or radome, which contains the 
antenna and the tower or foundation. Typical radius for the radome is 
2-3 metres. Inside it, and (typically) in a shed at the base of the tower, 
are several subsystems. A simple block diagram of a radar is shown in 
Figure 2.
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Figure 1. This is what a radar looks like from the outside. This one is 
positioned near the southern tip of Sweden’s largest island, 
Gotland.

2.2.1 The transmitter
The transmitter is the source of electromagnetic radiation. It gener-
ates a high frequency signal which leaves the radar through the 
antenna. The transmitter is controlled by the modulator. The purpose 
of the modulator is to switch the transmitter on and off and to pro-
vide the correct waveform for the transmitted pulse. Typical pulse 
durations range from 0.1 to 10 µs. The number of pulses per second is 
denoted prf (pulse repetition frequency) and this typically ranges 
from 200 to 3 000 Hz. Every pulse travels from the radar’s antenna at 
the speed of light and if it hits any target along its path, some of its 
energy will be reflected back toward the radar. If the energy of this 
reflection is large enough it will be detected by the radar. By measur-
ing the time between the sending and receiving of the pulse, the dis-
tance to the target can be easily calculated.
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Figure 2. Simple block diagram of a radar. (Adapted from Rinehart, 1991)

2.2.2 The antenna
The antenna directs the radar’s signal into space. For any given elec-
tromagnetic frequency, a larger directional antenna will give a smaller 
antenna beam pattern and thus better angular resolution. An antenna 
that sends the radiation equally in all directions is called an isotropic 
antenna, but this type of antennas is not used in radars. However, an 
isotropic antenna is often the antenna against which radar antennas 
are measured to compare them to each other (via the antenna gain 
parameter, treated in Section 2.3 on page 8). The radiation from an 
isotropic antenna is much like the radiation from a candle whereas the 
radiation from a radar antenna is more like the radiation from a flash-
light.

Radars have an antenna and a reflector. The antenna transmits the 
radar signal through the feedhorn toward the reflector which then 
reflects and directs the signal away from the radar. Most weather 
radars have reflectors which are parabolic in cross-section and circular 
when viewed from the front or back. The beam pattern formed by 
such a circular parabolic reflector is usually quite narrow, typically one 
degree in width for the mainlobe of the pattern. The combination of 
the feedhorn and reflector is often collectively referred to as the 
“antenna”, in this report and otherwise. (Rinehart, 1991, pp 11)

RECEIVERTRANSMITTERMODULATOR

TRANSMIT/RECEIVE
SWITCH

WAVEGUIDE

FEEDHORN

REFLECTOR
ANTENNA
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2.2.3 The waveguide
The conductor connecting the radar transmitter and antenna is called 
a waveguide. This is usually a hollow, rectangular, metal conductor 
whose interior dimensions depend on the wavelength of the signals 
being carried. Coaxial cables are too lossy for these purposes at the 
high frequencies used by radars. (Ibid.)

2.2.4 The transmit/receive switch and the receiver
The purpose of the transmit/receive switch is to protect the receiver 
from the high power of the transmitter. Most radars transmit from a 
few thousand watts to 1 MW of power, but the receiver is designed to 

detect powers of 10-10 W, i.e. 0.1 nW, or less. At transmission, the 
transmitter is connected to the antenna and the receiver is discon-
nected. As soon as a pulse has been transmitted, the receiver is con-
nected until the next pulse should be transmitted. The receiver is 
designed to detect and amplify the very weak signal echoes received 
by the antenna. Most receivers in weather radars are of the so-called 
superheterodyne type in which the received signal is mixed with a refer-
ence signal at some frequency which is different from the transmitted 
frequency. This mixing converts the signal to a much lower frequency 
(30 to 60 MHz) at which it can be more easily processed. (Ibid.)

2.3 Radar parameters
One of the most important parameters of any radar is the wavelength 
(or frequency) for which it is designed. The transmitter and antenna 
must both be specifically designed for the same wavelength. Different 
wavelegths are useful for detecting objects with different shapes and 
sizes. Short wavelength radars more effectively detect small particles, 
such as drizzle drops or cloud droplets. However, using shorter wave-
lengths, a larger part of the energy in the waves is absorbed by the 
reflecting particles. This makes it difficult to accurately measure the 
back-scattered energy for more distant targets that lie beyond the 
range of closer targets. The damping process is known as attenuation.

Using longer wavelengths, the attenuation becomes less effective. 
This means that a distant thunderstorm behind a closer thunderstorm 
will appear on the radar screen with a more accurate intensity. Wave-
length and frequency of electromagnetic waves are related through the 
well-known equation
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(Eq 1)

where f is the frequency, c the speed of light, and λ the wavelength. 
The frequencies used by radars range from 100 MHz through 100 
GHz, and within this frequency range different frequency bands have 
been defined as seen in Table 1. All 12 radars operated in Sweden use 
frequencies within the c band. Generally shorter wavelengths mean 
smaller and less expensive equipment.

Another important parameter is the size of the reflector. Typical 
diameters for weather radar reflectors range from 30 cm to as much as 
10 m. Yet another measure of importance to radar antennas is the 
antenna gain. The gain (g) of an antenna is the ratio of the power that 
is received at a specific point in space to the power that would be 
received at the same point from an isotropic antenna. This is usually 
measured logarithmically in decibels and is then written as

(Eq 2)

where p1 and p2 represent the power of the two antennas. Typical 
antenna gains range from 20 dB to 45 dB. A fourth important param-

Table 1. Radar bands and their frequencies and wavelengths. From 
Rinehart (1991). Visible light wavelegths range from 400 to 700 
nm. 

Band
designation

Nominal 
frequency

Nominal 
wavelength

HF 3-30 MHz 100-10 m

VHF 30-300 MHz 10-1 m

UHF 300-1000 MHz 1-0.3 m

L 1-2 GHz 30-15 cm

S 2-4 GHz 15-8 cm

C 4-8 GHz 8-4 cm

X 8-12 GHz 4-2.5 cm

Ku 12-18 GHz 2.5-1.7 cm

K 18-27 GHz 1.7-1.2 cm

Ka 27-40 GHz 1.2-0.75 cm

mm 40-300 GHz 7.5-1 mm

f c
λ
---=

G dB( ) 10
p1
p2
-----log

10
=
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eter is the antenna beamwidth. Antenna gain and antenna beamwidth 
are related as given by

(Eq 3)

where θ and ϕ are the horizontal and vertical beamwidths, respec-

tively, and k2 depends on the kind and shape of the antenna. For cir-

cular reflectors, k2 = 1 and θ = ϕ. The beamwidths are the angular 
distances across the beam pattern at the point where the power is 
reduced to one half of the peak power. (Ibid.)

2.4 The radar equation
In this section, the radar equation will be described for two different 
conditions: for point targets and for distributed targets. The two 
equations both describe the amount of energy reflected towards the 
radar by particles in the air, in terms of the size of the particles and 
antenna properties. Details about the radar equation can be found in 
Rinehart (1991), chapters 4 and 5, from which the facts in this section 
and subsections have been compiled.

For an isotropic antenna, the area covered by a single, expanding wave 
is equal to the area on the surface of a sphere at the corresponding dis-
tance. The power density S, i.e. power per unit area, can thus be writ-
ten as

(Eq 4)

where pt is the transmitted power, and r is the distance from the radar. 
To get the power pσ received by a target with area Aσ when a non-iso-
tropic antenna with gain g is used, all that needs to be done is to mul-
tiply S with Aσ and g - assuming the target is positioned along the 
center of the radar beam axis:

(Eq 5)

This power is usually reradiated isotropically back into space. Some of 
this reradiated energy will be received back at the radar. The amount 
of energy detected by the radar is given by

g π2 k2⋅
θ ϕ⋅

---------------=

S
pt

4πr2
-----------=

pσ
ptgAσ

4πr2
--------------=
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(Eq 6)

where Ae is the effective area of the receiving antenna. This area can 
be expressed in terms of the antenna gain and the wavelength λ of the 
radar:

(Eq 7)

One last refinement that will yield the radar equation for point targets 
has to do with the area of the target, Aσ. This area is not necessarily 
the size the target appears to the radar. Instead, a parameter called the 

backscattering crossectional area of the target is used, and it is called σ.1 
The radar equation for a point target located on the center of the 
antenna beam pattern can thus be written as

(Eq 8)

However, users of weather radars are usually not interested in point 
targets but in distributed targets; when a radar is aimed at a meteoro-
logical target, there are many raindrops, cloud particles or snowflakes 
within the radar beam at the same time. The above equation (Equa-
tion 8) is not applicable in these cases. Without going into details, the 
radar equation for distributed targets is given here:

(Eq 9)

As before, θ and ϕ are the horizontal and vertical beamwidths, 
respectively. h is the pulse length in space corresponding to the dura-

tion τ of the transmitted pulse. |K|2 is the dielectric constant of precipi-
tation and depends on the particles’ water phase and the wavelength 

of the radar2. The parameter l describes attenuation, i.e. loss of power 
in travelling through a medium such as the atmosphere, clouds, rain 
or through the radome. l is always between zero and one, usually 

1. σ depends not only on the size, shape and kind of matter making up the target but also of 
the radar wavelength. For details, turn to Rinehart (1991).

2. For the most commonly used radar wavelength, |K|2 for water is around 0.93 and for ice 
it’s 0.20 - this difference surely affects pr!

pr
pσAe

4πr2
------------

ptgAσAe

4π( )2r4
---------------------= =

Ae
gλ2

4π
---------=

pr
ptg

2λ2σ

64π3r4
--------------------=

pr
π3ptg

2θϕh K 2lz

1024 2λln 2r2
------------------------------------------=
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closer to 1 than to 0. l is often neglected in the calculations (i.e. it is 
considered to be equal to 1). z, finally, is called the reflectivity factor 
and this is calculated as

(Eq 10)

where the sum is over all the particles in a unit volume and D is the 
radius of a particle (e.g. a typical raindrop).

Ignoring l and approximating |K|2, the only unknown parameter in 
the equation above is the reflectivity factor z. Solving for z we get an 
indication of the characteristics of the precipitation in the area from 
which the received power pr originates. Reflectivity factors, or simply 
reflectivities, can range from as small as 0.001 for fog or weak clouds 
to as much as 50 000 000 for very heavy hail. It is practical to describe 
z using logarithmic units, so a new parameter Z is introduced to do 
just that:

(Eq 11)

This new parameter Z is measured in units of dBZ1, whereas the lin-

ear parameter z is measured in mm6/m3. This gives us roughly -30 
dBZ for fog and 77 dBZ for large and heavy hail. The reflectivity data 
files that are encountered in rave usually contain dBZ values, linearly 
transformed into the 8 bit [0, 255] interval.

2.5 Doppler velocity measurements
In 1842, Christian Doppler discovered that moving objects will shift 
their frequencies of sound in proportion to their speeds of movement. 
Weather radars do not use sound waves but electromagnetic waves, 
but these show the same behaviour: a moving target observed by a sta-
tionary weather radar will shift the frequency of the radar signal an 
amount depending upon its (radial, or parallel to the emitted ray) 
speed. Not all weather radars have the equipment to perform Doppler 
velocity calculations, but the 12 Swedish ones do.

For a single target at distance r from the radar, the radar wave will 
travel a distance of 2r - to the target and back to the radar. Using 

1. dBZ stands for “decibels relative to a reflectivity of 1 mm6/m3”.

z D6∑=

Z 10 zlog10=
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wavelength λ, this corresponds to 2r/λ wavelengths, or, since one 
wavelength equals 2π radians, 4πr/λ radians. So if the radar signal is 
transmitted with an initial phase of ϕ0, the phase of the received sig-
nal will be

(Eq 12)

The time derivative of this phase, i.e. the change of phase from one 
pulse to the next, is given by

(Eq 13)

This time derivative, or angular frequency, is also equal to 2πf. And 
the radial velocity of the target, v, is exactly the time derivative of r, 
included in Equation 13 above. Thus, the frequency shift caused by a 
moving target may be written as

(Eq 14)

where v is the radial velocity of the object and λ, as before, is the 
wavelength of the radar waves. A Doppler radar maintains a constant 
transmitter frequency and phase relationship from one pulse to the 
next, and exploits Equation 14 in order to calculate radial velocities. It 
is important to realize just that: it is only radial velocities that can be 
measured using a Doppler radar. Objects travelling at a 90 degree 
angle to the radar beam will appear to have zero velocity. (Rinehart, 
1991, pp 73)

2.6 Radar data
All weather radars basically operate the same way: First, the antenna 
is instructed to point at a certain elevation angle. This is the angle 
between the radar ray and the ground at the radar. Then the radar 
transmits a few pulses at this elevation and with a constant horizontal 
rotational velocity starting from due north. Having received the ech-
oes from these pulses (if any), the transmitter and antenna proceed 
clockwise, increasing the azimuth angle, or bearing, in short steps from 
0 to 360 degrees, using the same elevation angle. The azimuth angle 
is a direction in terms of the 360 degree compass; north is at 0 
degrees, east is at 90 degrees, and so on. Then a new elevation angle is 

ϕ ϕ0
4πr

λ
---------+=

td
dϕ 4π

λ
------

td
dr⋅=

f 2v
λ
------=
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used and the transmitter and antenna loop through the whole azi-
muth span of 360 degrees. The data received from one such revolu-
tion, with the elevation angle held constant, is shown in Figure 3. 
Here, the colours on the surface correspond to different reflectivities 
(z in the radar equation). The upper half of the surface is mostly clear 
air with few echoes. In this figure, the earth is assumed to be flat - 

hence the rays bend slightly upwards1.

A typical Swedish radar uses 12 different elevation angles, from 0.5 to 
40 degrees, and an azimuthal resolution of 0.9 degrees. Operating in 
non-Doppler mode the radars have a maximum range of 240 km and 
a resolution of 2 km along each ray. Using radar terminology to 
describe the radial resolution, we say the radars have 2 km range bins. 
A complete scan thus contains

(Eq 15)

reflectivity samples and this collection of data is called a polar volume. 
It takes almost 15 minutes to collect data for a full polar volume, i.e. 
when one scan is completed, it is soon time to start a new one

Figure 3. The surface generated by a radar scan when the elevation angle is 
held constant and the azimuth angle varies from 0 to 360 
degrees..

1. The gaseous composition of the atmosphere also affects ray bending (according to Snell’s 
law). See Section 2.7 on page 15.

12 360
0.9
--------- 240

2
---------⋅ ⋅ 576000=
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The samples in a polar volume may be arranged in a three-dimen-
sional array to implicitly associate each value with its origin in space:

data = float[elevationAngles][azimuthAngles][rangeBins]

In order to display this data in a 3D scene as in Figure 3, the (eleva-
tion, azimuth, range bin) coordinates need to be transformed into a 
cartesian (x, y, z) coordinate system. This transformation should take 
the ray bending into account, as discussed in the next section.

2.7 Range, height, and distance
If there were no atmosphere, a horizontal ray emitted from a radar 
would travel in a straight line. Since the earth is curved, its height 
above the earth’s surface would increase with the distance from the 
radar. In other words: it would exhibit a relative curvature with 
respect to the earth’s surface of 1/R, where R is the radius of the earth:

 (Eq 16)

Here, ϕ is the angle between the tangent of the circle arc and some fix 
axis and dS is a short distance along the arc.

But the earth does have an atmosphere. Temperature, as well as 
atmospheric and vapour pressure vary with the height in the atmos-
phere and this affects the refractive index. These parameters often 
change abruptly with the height as the atmosphere is divided into rel-
atively distinct layers of different gaseous compositions, hence the 
refractive index changes with the height. Electromagnetic waves trav-
elling in the atmosphere bend slightly when the refractive index 
changes, in accordance with Snell’s law:

(Eq 17)

where n is the refractive index at some point in the atmosphere and dn 
is the change of n over some layer in the atmosphere. The parameters 
i and r are the angles of incidence and refraction, respectively; ui and 
ur are the speeds of electromagnetic radiation in the first and second 
layers, respectively.
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For a radar ray travelling in a non-uniform atmosphere, the ray will 
bend more or less relative to the earth, depending on how much the 
refractive index changes with height. The curvature of a radar ray rel-
ative to the earth’s surface is then

(Eq 18)

where the last term describes how the refractive index of the atmos-
phere varies with the height. Under normal circumstances, this deriv-
ative is negative - the refractive index is typically around 1.0003 at sea 
level and 1.0 in outer space. The effect is then that radar rays appear 
to bend downward and their curvature relative to the surface of the 
earth is less than 1/R. It is a good approximation to use the following 
approximation of the curvature (Rinehart, 1991):

(Eq 19)

Using this curvature, the range, height, and distance variables may be 
defined as shown in the grossly exaggerated Figure 4. The range of a 
certain radar sample is the distance from the radar to the sample, 
along the ray. The distance is the corresponding distance from the 
radar along the earth’s surface, to the point directly beneath the sam-
ple. And the height of the sample is simply the sample’s height above 
the surface of the earth.

Figure 4. Range, height, and distance.

The range, height, and distance calculations are performed in order to 
calculate the cartesian coordinates of a sample. If the sample is along a 
ray with azimuth angle α and elevation angle ε, the x, y, and z coordi-
nates are simply given by:
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(Eq 20)

This relationship is used when the radar data is transformed into a 
cartesian coordinate system. This way, the radar’s x and y coordinates 
are always (0, 0), and its z coordinate depends on the radar’s height 
above sea level.

x d αcos⋅–=
y d αsin⋅=
z h=
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3
RAVE - current and

future use

3.1 Background
The rave project was launched in 1996. The main goal was to 
develop an application for analysis and visualization of radar data at 
smhi, and possibly for its international equivalents in the Baltic 

region1. Some basic work was done as a master’s thesis by Håkan 
Bolin during the first six months of the project. Since then, the sys-
tem has been extended with various plugins and functions to import 
data from different radar data formats, etc. But until now, there have 
been no 3D visualization possibilities, although it was stated from the 
beginning that there should be.

In this chapter, rave’s current functionality is presented along with 
some discussions on the products that are generated, and on a few of 
the products that are added with this project. Then something is told 
about the current and future users of rave.

3.2 System design
The basic system design is shown in Figure 5. Radar data is sent via 
modems and telephone lines to a database server at smhi. A rave 
application acts as a client to the database server and can fetch radar 
data via Internet and the http protocol.

rave is supported on Unix and Linux platforms. rave could quite 
easily be ported to the Windows or Macintosh platforms though, 

1. There is a cooperation between weather radar operators in Sweden, Norway, Denmark, 
Finland, Germany, and Poland called baltrad and operated within the framework of The 
Baltic Sea Experiment: baltex. See Raschke et al (2001).
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since Python is a platform-independent language. A few c modules 
would have to be recompiled.

As shown in Equation 15, a typical polar volume contains about half a 
million samples. The samples are all eight bits (i.e. one byte) each. 
Often, there are a lot of zero values - corresponding to clear air - in 

the volumes. A simple run-length encoding1 is employed that typi-
cally renders file sizes of around 30 to 250 kilobytes, as compared to 
the half a megabyte size of an uncompressed file. The file sizes vary 
with the weather; lots of precipitation implies large file sizes!

Figure 5. The basic system design in RAVE.

3.2.1 Graphical user interface
rave’s main graphical user interface looks as shown in Figure 6 on 
page 22. There are a few drop-down menus at the top of the main 
window; the first one is the File menu. This menu provides options to 
open a radar data file from the radar data network database as well as 
from the local file system. Time sequences of polar volumes can also 
be opened this way. There are also options to save files using different 
formats and to quit “raving”.

Once a polar volume has been loaded, a product can be generated 
through the Products drop-down menu. The possible products for a 
single polar volume are ppi, cappi and pcappi images (described 
below). Selecting one of these alternatives from the Products menu 
brings up a dialog where options for the desired product can be set. 
When this dialog is closed, the product is generated and displayed, 

1. In a run-length encoding, each sequence of consecutive, equal values is replaced by the 
value and the sequence length, e.g. 0, 0, 0, 0, 0, 0, 2, 2, 2, 9 would be replaced by (0, 6), 
(2, 3), (9, 1).
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occupying the larger part of the window. A new item, Volume visuali-
zation, is added to the products menu with this project, allowing 3D 
views of polar volumes. The 3D graphics is displayed in a new win-
dow. More on this later!

Using the View and Options menus, the user can choose what features 
should be included in the currently displayed window. Options 
include a background that shows the surrounding land and water, or a 
vector graphics overlay of coastlines, borders, lakes, and the like. On 
top of that, the user can select what colour legend to use, and whether 
the legend should be displayed along with the image or not. Different 
colour legends map the scalar values (i.e. wind or reflectivity) to dif-
ferent colours.

It is also possible to bring up an information window that displays 
information (geographical as well as image coordinates and scalar 
value) about the pixel currently below the mouse pointer.

When a product is generated, it is displayed in the main window as 
shown in Figure 6. It is possible to zoom in the image by clicking and 
dragging to create a rectangular region of interest.

In the following, the most common radar products will be presented.

3.3 Products from 3D radar data
In this section, the most common 2D products generated from a sin-
gle polar volume of radar data is presented. The ones included in rave 
before this project started are the ppi, cappi and pcappi products. 
Added with this project are the rhi and vad products, where the lat-
ter is a 3D product from a wind volume. All the others are 2D prod-
ucts.

3.3.1 The PPI product
Considering radars in general, the ppi scope is by far the most com-
mon radar display. ppi is an abbreviation for plan position indicator. 
The ppi is one of the most common products used with weather 
radars. This product takes all data collected during a 360 degree azi-
muth scan using the same elevation angle and projects it down onto a 
plane. The result is a circular area with the radar positioned at the 
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centre of the circle. The radius of the circle depends on the elevation 
angle; larger elevation angles give smaller circles, and vice versa.

The ppi product is generated as an image with cartesian coordinates 
where the radar is positioned at the origin. For each (x, y) coordinate 
in the image, the polar coordinates are calculated as (r, ϕ). Here, r is 
the distance to the origin and ϕ is the counter-clockwise angle from 
the positive x axis to the line drawn from the origin to the (x, y) point. 
Then r is used to determine which one of the typically 120 bins is 
closest, and ϕ is used to determine which one of the typically 400 azi-
muth angles is closest. Nearest neighbour or bilinear interpolation 
may be used to calculate the value to store at position (x, y) in the out-
put image.

An example ppi image is shown in Figure 6. The elevation surface 
object, discussed in Section 5.4.3 on page 53, adds height information 
to a ppi image and displays it in 3D.

Figure 6. A PPI image and the main graphical user interface in RAVE.

3.3.2 The CAPPI product
The “ca” in cappi stands for constant altitude. This is a constant alti-
tude plan position indicator. The output from a cappi algorithm is a 2D 
image that is parallel to the surface of the earth; this image has been 
generated from an input polar volume. In Figure 7, a radar is shown 
with four of its elevation angles. When a cappi image is generated, 
the samples closest to the chosen altitude are projected down onto the 
output image plane, typically using nearest neighbour or bilinear 
interpolation.
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At lower altitudes, there is data only in the region closest to the centre 
of the output image (which is straight above the radar), whereas at 
higher altitudes, there is no data available at the centre of the output 
image. There will be a “hole” with no data at the centre of the image 
for higher altitudes, and this hole grows with the altitude. This is 
understood by looking at Figure 7. There is a cappi image to the left 
in Figure 8. For this cappi, generated for an altitude of 2 500 m., the 
maximum range of the data is around 100 km.

Figure 7. Generating a CAPPI image. The output image is orthogonal to the 
paper. 

3.3.3 The PCAPPI product
The “p” is for pseudo. This product also generates data for some con-
stant altitude, but values are extrapolated to extend the image beyond 

the left and right boundaries of the cappi sample area in Figure 71. 
The extrapolation is based on data from the lowest elevation, i.e. the 
closest available data. In Figure 8, all the data in the right image that 
is absent in the left one has been extrapolated from the lowest eleva-
tion angle. The cappi image is an exact subpart of the pcappi image; 
more specifically, the centers of a cappi and a pcappi image from the 
same height look the same.

It is pcappi images from low altitudes, typically around 500 metres, 
that are sometimes shown in the weather forecasts on Swedish televi-
sion. The data shown on tv is quantized to around four levels, so a lot 
of information is stripped away from the eight bit polar volumes 
before the data enters the Swedish living rooms!

1. And beyond the near and far boundaries, not seen in the 2D figure! Remember, in Figure 
7, the generated image is orthogonal to the paper.

CAPPI SAMPLE AREA
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Figure 8. A CAPPI (left) and a PCAPPI (right) image, showing data from the 
same location, time, and altitude (2 500 metres).

3.3.4 The RHI product
rhi is an abbreviation for range/height indicator. The rhi product is 
generated using data from a single azimuth angle and all elevation 
angles. The resulting image lies in a plane that is orthogonal to the 
surface of the earth. See Figure 9.

The rhi products provides important information about the altitude 
and height, or “thickness” of storms. Meteorologists can tell a lot 
about the current weather situation by looking at a single rhi image!

As with the previously described products, some interpolation 
method is used in order to fill the pixels in the output image that lie 
between elevations.

Figure 9. Generating a RHI image. The output image is parallel to the paper.

RHI SAMPLE AREA
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3.3.5 The VAD product
This abbreviation is for velocity/azimuth display. The vad technique 
can be used to calculate the vertical wind profile at the radar site, 
using data from a Doppler ppi scan. Measuring the Doppler velocity 
along a circle at constant altitude, assuming the wind field is homoge-
neous, and plotting the radial wind velocity against the azimuth angle, 
one gets a sine-function like shape. In Figure 9, three vad circles have 
been drawn for the three distances from the radar: D1, D2, and D3. 
These three distances obviously correspond to different altitudes and 
ranges along the radar ray, as discussed in Section 2.7, “Range, height, 
and distance”, on page 15. Data from one such circle is plotted in Fig-
ure 11. In the weather situation depicted in Figure 11, there was no 
precipitation in the azimuth interval between 60 and 160 degrees, i.e. 
north-east, east, and south-east from the radar.

Figure 10. VAD circles.

The azimuth angle at the maximum of the sine-function corresponds 
to the horizontal wind direction; the radial wind velocity, measured by 
the radar, has its maximum value when it is parallel to the actual wind 
direction. It is important to realise, however, that the radial wind 
velocity is also affected by the speed at which the reflecting particles 
are falling. This portion of the radial velocity is independent of the 
azimuth angle and results in an offset of the sine curve. The horizon-
tal wind velocity is the sine curve’s amplitude with respect to the off-
set.

In Figure 11, the maximum value of a sine curve fitted to the points is 
in the clear air interval, somewhere around 80 degrees azimuth. As 
can be expected, the minimum value is about 180 degrees from there, 

D1 D2 D3
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at some 260 degrees. This means that the winds are blowing from 
around east direction (ene). The sine curve’s vertical offset from zero 
is around -2.5 m/s, so the horizontal wind speed is around 7 m/s.

Figure 11. Velocity/azimuth display of the Doppler velocity along a VAD 
circle.

The input to a vad algorithm is data from one or several (with differ-
ent elevation angles) Doppler ppi scans and the desired altitudes at 
which vad circles should be generated. The output is either a graph 
like the one in Figure 11 or a set of horizontal vectors, one for each of 
the desired altitudes. Such an algorithm was already implemented in 
rave before the start of this project, but the only possible way to view 
the output from the algorithm was as lists of numbers. A 3D visuali-
zation object employing this algorithm has been added (see Figure 
29).

3.4 RAVE users
rave, in its current form, is not being used in the daily forecast pro-
duction at smhi. There are other tools to view simple radar data prod-
ucts, possibly together with colocated satellite images, that are used 
instead. rave is more of a post storm analysis tool; researchers at 
smhi can examine exceptional weather situations in greater detail 
using rave.
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Built upon Python, it is possible to call every rave method and func-
tion by issuing commands in a Python interpreter. New algorithms 
can easily be added and tested and this openness is one of rave’s 
greatest strengths. rave is a superiour tool to perform research within 
weather radar analysis and visualization.

At the end of this project, the application will be installed at Arlanda 
airport outside Stockholm for evaluation. Meteorologists at airports 
make great use of weather radar data. It is one of their most important 
decision-making tools.

Meteorologists are used to viewing and analyzing 2D images like 
pcappi and rhi products. It is thus very important to include these 
types of objects in the 3D version of rave, as they may serve to bridge 
the gap between 2D and 3D visualizations. Having spoken to meteor-
ologists at smhi, their main opinion is that it will probably be of great 
use to them to be able to analyze radar data in 3D. As with all new 
technologies it will, however, take some time for them to get used to 
it. It is of great importance that the user interface be designed for easy 
use.
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4
Visualization of
volumetric data

4.1 Introduction
This chapter aims to explain and compare the three main classes of 
methods for visualization of volumetric data: slicing, surface render-
ing and volume rendering techniques.

A digital image consists of a two-dimensional array of data elements. 
These represent colour or light intensity and are referred to as pixels, 
which is short for picture elements. Similarly, a volume of data is a 
three-dimensional array of data elements which possibly is the result 
of a radar scanning and sampling some volume of air. The acquired 
values are called voxels, or volume elements. A voxel is defined as a 

point without a size in three-dimensional space1. The locations of the 
voxels are usually confined to specific regular spacing on a rectangular 
grid, as in Figure 12, but this is not always the case.

Figure 12. Pixels and voxels.

1. Another common definition is to consider a voxel to be a cube with some small size
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4.2 Polar and cartesian volumes
In this chapter, it is assumed that the data is stored in a cartesian 
coordinate system, forming a rectilinear grid of data. However, as 
seen in Chapter 2, the nature of radar data is originally not cartesian 
but polar. Some products may be created directly from the polar vol-
umes, e.g. vertical cross-sectional planes are easily created using all 
available data with one azimuth angle (see Section 3.3.4, “The RHI 
product”, on page 24, and Section 5.4.4, “The RHI object”, on 
page 54). Some products, e.g. isosurfaces, require that data be resam-
pled into a cartesian grid first, though.

4.2.1 Gaussian splatting
One method to create a cartesian grid of data out of a dataset with 
another structure - completely unorganised or with some polar struc-
ture, for instance - is called Gaussian splatting. In this method, the 
input data points are “splatted” into the output dataset using some 
Gaussian ellipsoid as a weighting function. First, the dimensions of 
the output cartesian grid are set. Then, for each input point, its posi-
tion in the output grid is calculated. The 3D Gaussian kernel is used 
as the weighting function when the input point’s value is distributed 
to the points in the output dataset that are closest to the calculated, 
exact output point. (Schroeder et al, 2001)

The most important parameter to the algorithm is the width of the 
Gaussian kernel. This kernel is precalculated; the same kernel is used 
for all input points.

4.2.2 Shepard’s method
As in the Gaussian splatting algorithm above, the first step is to 
decide the dimensions of the output dataset. For each point in the 
output dataset, the closest input points are weighted together to form 
the value that is stored in the output point. The weighting depends on 
the inverse distance to the input points; i.e. closer input points con-
ribute more than points that are farther away from the current output 
point. The equation used is as follows:

(Eq 21)F x y z, ,( ) wifi

i 1=

n

∑=
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where n is the number of input points, fi are the values at the input 
points, and wi are the weight functions assigned to each input point. 
One common way to define the latter is:

(Eq 22)

where p is a positive number called the power parameter. The larger 
the power parameter, the less input points far away from the current 
output point will affect it. Finally, hi is the distance from input point i 
to the current output point, or

(Eq 23)

(Environmental Modeling Systems, Inc.: Inverse Distance Weighted Inter-
polation)

4.3 Different approaches
The three basic options for displaying a three-dimensional data set on 
a two-dimensional computer screen are (Watt, 1999):

1. To slice the data set with a cross-sectional plane. This is the easiest 
option with a quite straightforward solution if the plane normal is 
parallel to one of the coordinate axes of the volume data set.

2. To extract an object that is “known” to exist within the data set and 
convert its surface into polygons, which are typically rendered by a 
hardware accelerated 3D renderer. If the whole data set is the torso 
of a human body then the liver may be extracted and displayed in 
isolation. The original volume data needs to be segmented first. 
This process is an example of surface rendering.

3. To assign transparency and/or colour to voxels in the data set, and 
then view the entire set from any angle. This is what is usually 
known as volume rendering.

The first option is already implemented in rave, but only for planes 
parallel to the earth’s surface. This and the two other options will 
soon be explained further, but first we need to know how to calculate 
the data value at an arbitrary point in the volume by using interpola-
tion. This is useful not only during slicing, surface extraction or vol-
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ume rendering, but also when a polar data volume should be 
resampled into a cartesian data volume, e.g. using Gaussian splatting 
or Shepard’s method.

4.4 Interpolation
Voxels are usually addressed using three integer coordinates: x, y, and 
z. But what if one needs to know the data value at, say, (8.8, 4.1, 4.0)?

4.4.1 Nearest neighbour interpolation
The easiest solution to the aforementioned problem is to simply use 
the value at the nearest voxel - in our case the value at position (9, 4, 
4). This method is called nearest neighbour or zero-order interpolation. 
Using this method, there is a region of constant value around each 
sample in the volume, as seen in Figure 13. This interpolation scheme 
is the least time consuming, but also the least accurate.

Figure 13. Nearest neighbour interpolation.

4.4.2 Trilinear interpolation
When trilinear interpolation is used, the data value is assumed to vary 
linearly between voxels along directions parallel to the major axes. 
Figure 14 illustrates this. The point P has coordinates (x, y, z) within 
the cube cell defined by voxels A through H. Voxel A has coordinates 
(0, 0, 0) and a value of VA and voxel H has coordinates (1, 1, 1) and a 
value of VH. The value of VP calculated using trilinear interpolation is 
then:
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(Eq 24)

In general, A will be at some location (xA, yA, zA) and H will be at (xp, 
yp, zp). In this case, x in Equation 24 above would be replaced by (x - 
xA)/(xH - xA) with similar substitutions made for y and z.

Trilinear interpolation is obviously more time consuming than is 
nearest neighbour, but it gives more accurate results. Even more accu-

rate interpolation methods may be used1 but the computational price 
is usually too high - especially when interpolation calculations should 
be performed for millions of voxels. Most of the times, trilinear inter-
polation gives good enough results.

Figure 14. Trilinear interpolation.

4.5 Slicing techniques
A cross-sectional plane can be extracted from the volume data set. 
This operation is known as slicing. When the voxels are confined to a 
regularly spaced grid, the plane normal is parallel to one of the coor-
dinate axes and the plane’s offset from the origin is an integer, all that 
has to be done is to form an image using the voxels in the plane. 
When the plane’s offset from origin is not an integer, linear interpola-

1. Interpolation may be regarded as convolution using a kernel, where the optimal “kernel” 
is the infinite sinc function. Tricubic convolution is a common method. Here, cubic 
splines in three dimensions are used to approximate the sinc function. See Danielsson et al 
(2000).

VP VA 1 x–( ) 1 y–( ) 1 z–( )⋅ VB x 1 y–( ) 1 z–( )⋅ VC 1 x–( )y 1 z–( )
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tion may be used in order to calculate the values in the voxels. This 
technique may also be used when the plane normal is not parallel to 
one of the coordinate axes.

Slicing techniques effectively only display two dimensions of the data. 
However, this reduction from 3D to 2D may lead to images that are 
easily interpreted. And when a 3D environment is available, planes 
with different normals and offsets can be viewed simultaneously. If 
the user is allowed to adjust the parameters of the planes and to view 
the scene from arbitrary positions, the result may be some very reveal-
ing visualizations.

4.6 Surface rendering techniques
Surface extraction, in the case of visualizing weather radar data, 
would be to identify separate cloud formations and for each cloud cre-
ate a computer graphics object to represent the cloud. These objects 

would be hollow with surfaces made of polygons (triangles).1

When volumetric data is visualized using a surface rendering tech-
nique, a dimension of information is essentially thrown away. How-
ever, the resulting images may be very useful anyway, and these are 

generally rendered faster than if volume rendering would be used2.

A surface can be defined by applying a binary segmentation function 
B(v) to the volumetric data. B(v) evaluates to 1 if the value v is con-
sidered part of the object, and 0 if the value v is part of the back-
ground. The surface is then the region where B(v) changes from 0 to 
1. If no interpolation is used, this results in a surface consisting of all 
the rectangular faces between voxels with differing values of B(v).

4.6.1 The marching cubes algorithm
An isosurface is the 3D surface representing the locations of a constant 
scalar value within a data volume. Every point on the surface has the 
same constant value; this value is the isovalue. The marching cubes algo-
rithm can be used to generate isosurfaces from a volume. It examines 
each volume element of a chosen (small) size in the volume and deter-

1. Please note, however, that natural clouds usually do not exhibit as sharp edges as this 
approach may produce!

2. Especially when polygon rendering is accelerated by dedicated graphics hardware.
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mines, from the arrangement of vertex values above or below the iso-
value, what the topology of an isosurface passing through this element 
would be. The small volume elements are all cubes of the same size 
and may contain one or more voxels. The values at the vertices (the 
corners of the cubes) are calculated using some interpolation method.

Once the values at each vertex of an element have been calculated, the 
second step of the algorithm is to look at each vertex value and deter-
mine if its scalar value is higher or lower than the isovalue of interest. 
Each vertex is then assigned a binary value - e.g., 0 if value is lower, 1 
if value is higher than the isovalue. In this case, the binary segmenta-
tion function B(v) is a thresholding function where the isovalue is the 
threshold. If the eight vertices of an element are all classified as ones 
or zeros, the element will have no isosurface passing through it - it 
will either be completely inside or completely outside the surface. The 
algorithm then moves on to the next element. Since the eight vertices 
of each element are all assigned binary values, each element can be 

classified as belonging to one of 28 = 256 cases. A table is predefined 
to contain, for every one of these 256 cases, (a) how many triangles 
will make up the isosurface segment passing through the cube, and (b) 
which edges of the cube contain the triangle vertices, and in what 
order. This is illustrated in Figure 15: here, the black dots represent 
vertices that have been assigned 1 in the first step of the algorithm. 
The triangles that constitute the isosurface in the volume element are 
shown. The coordinates for the vertices of these triangles are calcu-
lated using linear interpolation; the value at every vertex should be 
exactly the sought-for isovalue. By symmetry and rotational symme-
try the 256 possible cases reduce to the 15 shown in the figure.

The marching cubes algorithm represents a high-speed technique for 
generating 3D isosurfaces. Part of the elegance and simplicity of the 
algorithm lies in its ability to generate surface polygons within each 
single volume element. The surface generation is almost completely 

failureproof1. (Gallagher, 1995).

1. There are, however, a few exceptional situations in which the isosurface polygons are dis-
continous across two adjacent volume elements
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Figure 15. The marching cubes.

4.7 Volume rendering techniques
Representing a surface contained in volumetric data (as described 
above) can be useful in many applications, including visualization of 
radar data, but there are a few major drawbacks. First, the geometric 
primitives used - mostly triangles - can only approximate the actual 
surface in the original data. To make a good approximation, a lot of 
triangles need be used. The rendering complexity and memory 
requirements increase rapidly with the increased resolution. Second, 
much of the information in the original data is lost when hollow 
shells are created out of “solid” data volumes. Third, amorphous phe-
nomena such as fire, fog or clouds cannot really be adequately repre-
sented using surfaces.
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Volume rendering is an alternative approach which solves the men-
tioned problems. Transparency and colour values are assigned to all 
voxels in the data set based on their scalar values, and then the entire 
set may be viewed from any angle. Volume rendering can basically be 
achieved using an object-order technique or an image-order technique.

Object-order volume rendering techniques use a forward mapping 
scheme where the volume data is first transformed according to the 
desired rotation and then mapped onto the image plane. Image-order 
techniques, on the other hand, use a backward mapping where the 
image plane is transformed while the volumetric data is stationary. An 
imaginary ray is cast from each pixel in the image plane into the vol-
ume data. Figure 16 and Figure 17 illustrate the difference.

4.7.1 Object-order techniques
Using an object-order technique, the voxels are to be projected onto 
the image plane. If two voxels project to the same pixel, the one that 
was projected later will prevail. The most intuitive solution is to loop 
through and project the voxels in a back-to-front order. This way, the 
voxels closer to the image plane will also appear closer to the image 
plane since they are drawn “on top of”, erasing, the voxels behind 
them.

The volume is transformed before rendering, so that the z axis is per-
pendicular to the (x, y) image plane. Voxels far away from the image 
plane have large z values, while voxels closer to the image plane have 
smaller z values. This transformation is computationally expensive.

Figure 16. Object-order volume rendering (forward mapping). The volume is 
transformed and mapped into image space.
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The voxels can be looped through in a front-to-back order using a so-
called Z-buffer with as many data elements as there are pixels. The 
first voxel is projected to pixel (x, y) in the image plane. At the same 
time, the voxel’s distance to the image plane is stored at position (x, y) 
in the Z-buffer. If another voxel projects to position (x, y), by looking 
in the Z-buffer it is possible to determine that there is no need to 
process it further and draw it since it would be hidden by the first 
voxel. With a front-to-back method, once a pixel value is set, its value 
remains unchanged.

Clipping planes parallel to the image plane and clipping planes 
orthogonal to the three major axes may easily be added when back-to-
front or front-to-back algorithms are used. Voxels beyond the clip-
ping planes are simply ignored when traversing the volume. This way, 
different parts of the data set can be explored.

4.7.2 Image-order techniques
Image-order volume rendering techniques are fundamentally differ-
ent from the object-order techniques described above. Instead of 
determining how a voxel affects the pixels in the image plane, in an 
image-order technique, for each pixel it is calculated which voxels 
contribute to it. This is done by casting an imaginary ray from each 
pixel into the data volume. Samples are taken (at regular intervals) 
along the ray. The contributions from the samples are weighted 
together, possibly taking transparency, colour and distance to the 
image plane into account, into a value that is stored in the pixel from 
which the ray originates.
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Figure 17. Image-order volume rendering (inverse mapping). The image plane 
is transformed and mapped onto the volume.

Binary ray casting
One of the first image-order volume rendering techniques, called 

binary ray casting1, was developed on a machine with only 32 kilo-
bytes of ram. It was developed to generate images of surfaces con-
tained within binary data volumes without the need to explicitly 
perform boundary detection and hidden-surface removal. In order to 
provide all possible views, the volumetric data is kept in a fixed posi-
tion while the image plane is allowed to move; if the volume should 
be viewed from another direction, the image plane is moved accord-
ingly. For each pixel in the image plane, a ray is sent from that pixel 
and the algorithm determines if it intersects the surface contained 
within the data. The projection may be parallel or with some perspec-
tive. A two-dimensional example of perspective projection is shown 
in Figure 18. To determine the  first intersection along a ray, samples 
are taken with regular intervals. This algorithm works with binary 
data volumes, i.e. a value of 0 corresponds to background or “nothing” 
and a value of 1 corresponds to the object. If an intersection occurs, 

1. Please note that this is not the same thing as ray tracing, even though the two techniques 
are similar. In ray tracing, each ray is followed when it bounces on shiny objects. Very 
realistic scenes can be rendered using this technology.



40 of 76

shading calculations are performed (see Section 4.8 on page 41) and 
the resulting colour is given to the pixel from which the ray originates.

Figure 18. Perspective ray casting.

Modern ray casting
The computers of today typically have 256 megabytes of ram mem-
ory and hard drives to store several gigabytes of data. The display 
units are able to display 24-bit colour at high resolutions and in one 
second, a typical processor can perform some billion floating point 
operations. Thus, it is no longer necessary to confine to visualizing 

small, binary data volumes1. Modern algorithms for ray casting basi-
cally work the same way as the one above: rays are cast from every 
pixel in the image plane and into the volumetric data. Parallel or per-
spective projection may be used. The main difference is the way that 
the pixel colour is calculated from several (if not all) voxels encoun-
tered along the ray. A few alternative approaches follow.

We could define a threshold value and stop at the first intersection 
with a voxel whose value is greater than the threshold. This value, 
possibly together with some shading technique, is used to colour the 
pixel. This approach is similar to the binary ray casting above. If two 
thresholds are used (a lower and an upper), surfaces similar to the iso-
surfaces produced by the marching cubes algorithm can be generated.

1. Still, computer hardware performance is the major bottleneck of volume rendering as the 
data sets to be visualized tend to grow.
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Another approach is to follow the ray through the whole data volume, 
storing in the image plane pixel the maximum value encountered 
along the ray. This is called maximum intensity projection (mip) and by 
using this technique, internal features of the data may be revealed that 
would otherwise be hard to see.

Yet another approach is to store the sum of the values encountered 
along the ray. This is essentially how X-rays work. Or the average of 
the values along the ray could be calculated and stored at the current 
pixel.

The most generic technique involves defining an opacity and colour 
for each scalar value, then accumulating intensity along the ray 
according to some compositing function. The compositing function 
may take not only opacities and colours of the samples into account, 
but also the distance from the samples to the image plane.

4.8 Shading
When viewing any real object, a viewer subconsciously uses the infor-
mation provided by shades on the object in order to understand how 
the object is shaped. This effect can be used with good results in 3D 
visualizations on a computer screen; the shades help the user a great 
deal in understanding the different shapes and relations of objects.

There could be one or several light sources in a 3D graphics scene. 
Volume rendering algorithms may employ different illumination 
models to calculate lighting effects in order to make the data more 
intuitively understandable.

The Z-buffer may be used for shading - pixels that correspond to vox-
els far away from the image plane can be darkened, for example. This 
technique is called depth cueing. More accurate shades are obtained by 
passing the Z-buffer, which essentially is a 2D image, to a gradient-
shader. The gradient at each (x, y) pixel location is evaluated:

(Eq 25)∇z
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This estimates surface orientations; the gradient is parallel to the sur-
face normal. The partial derivatives can be approximated using back-
ward, forward or central differences; here is a central difference 
approximation of the first component above:

(Eq 26)

D(x, y) is the depth associated with the pixel at (x, y). When gradi-
ents, approximating surface normals, have been calculated for all pix-
els in the output image, the gradient shader takes these and the 
distance(s) from the light source(s) into account to produce the final, 
shaded image. Angles between the normals and vectors from the sur-
faces to the light source(s) affect the output shade. (Gallagher, 1995, 
pp 178)

4.8.1 Polygon shading
A typical basic illumination model, used to calculate light intensities, 
should be fast and deliver reasonably accurate results. The lighting 
calculations are typically based on the optical properties of the sur-
face, the background (ambient) lighting, and the positions, directions, 
colours, and intensities of the light sources.

In order to make sure that surfaces not exposed directly to a light 
source are still visible, a background or ambient light is defined for 
every 3D scene. This light has no spatial or directional characteristics. 
Thus, the amount of ambient light incident on each surface is equal 
for all surfaces.

On top of this ambient lighting, point sources of light contribute to 
the light intensity of a surface. This contribution depends on the 
angle between the surface normal, N, and a normalized vector from a 
point on the surface to the light source, L. Calling this angle θ, the 
intensity contribution from a point source of light is written as

(Eq 27)

where kd is a parameter between 0 and 1 describing the surface’s shin-
iness, and Il is the intensity of the light source. A surface is illumi-
nated by a point source only if the angle of incidence, θ, is in the 
range 0 to 90 degrees (i.e. cos θ is between 0 and 1).
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Using an illumination model as the one described briefly above, with 
a few extensions, light intensities can be calculated for each vertex in 
every triangle. Then, the light intensity can be linearly interpolated 
over the triangle in order to make the shading appear softer, especially 
for curved surfaces that have been approximated with polygons. This 
technique is known as Gouraud shading, and it can be performed by 
dedicated hardware in the 3D graphics accelerator.

Even better-looking shading can be achieved using Phong shading. In 
this case, the surface normals are linearly interpolated over the trian-
gle, the θ angle is calculated for each normal, and the expression in 
Equation 27 is evaluated.

Details on polygon shading can be found in any book dealing with 3D 
graphics, see for instance Hearn & Baker (1997).
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5
Implementation

5.1 Visualization software
The last few decades computer power has developed at an incredible 
pace; a decade ago, 3D scientific visualization was something that 
could only be accomplished using super computers. Nowadays the 
same task is feasible using only a standard pc - even the cheapest 
graphics cards contain some 3D acceleration hardware. This evolu-
tion has lead to the development of quite a few visualization software 
environments. Some of the most popular of those will be described 
briefly and their eligibility for incorporation into rave will be dis-
cussed. Before that, we take a look at the structural units of a 3D vis-
ualization system.

A typical 3D visualization system is shown in Figure 19. Starting 
with the two bottom boxes, images are to be displayed on a display 
unit connected to the graphics card on a computer. The graphics card 
contains hardware to render 2D and 3D graphics. The 3D graphics 
may contain light sources and shaded lines and polygons with differ-
ent opacities and reflection properties. Rendering commands to the 
hardware are dispatched from the graphics card driver, which is part 
of the operating system. This, in turn, receives its commands through 
a graphics api, such as OpenGL, DirectX or QuickDraw. Such an 
api serves as a convenience layer for the programmer, with relatively 
highlevel operations that can be used in overlying applications, such 
as OpenDX, avs/Express or iris Explorer. These contain implemen-
tations of even higher-level graphics operations, such as the marching 
cubes algorithm or different ray casting algorithms, as described in 
Chapter 4. Finally, as a front end to the user there is either a graphical 
user interface, or an application programming interface, or both, as 
shown by the top boxes. Applications (e.g. radar data visualization 
software) are built using this front end.
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Figure 19. Block diagram of a typical visualization system.

5.1.1 Visual programming systems
There are several visual programming systems available. In visual pro-
gramming systems, a data-flow approach to visualization and analysis 
is used. Data-flow is a way of decomposing data processing tasks into 
a sequence of self-contained steps, which are implemented as mod-
ules. The data-flow is directed by connecting the modules together, 
hereby creating visualization pipelines. Each module’s parameters can 
be adjusted through a mouse-driven graphical user interface. There 
are modules for manipulating, transforming, processing, rendering 
and animating data. Most modules have one or more input pipes and 
one or more output pipes. The pipeline typically starts with a module 
that can read some data from a file. The following modules alter the 
data in different ways. The last module in the pipeline may be one 
that writes the modified data to a file or sends drawing commands to 
the underlying 3D graphics api.

GRAPHICS
CARD DRIVER

GRAPHICS
CARD

3D GRAPHICS
API (OPENGL)

HIGH-LEVEL
ALGORITHMS

GRAPHICAL
USER

INTERFACE API

VISUALIZATION
SOFTWARE

OPERATING
SYSTEM



47 of 76

Using a visual programming system, little or no programming knowl-
edge is needed to create advanced visualizations of complex processes. 
A screenshot from iris Explorer, which is representative for this cate-
gory of visualization systems, is shown in Figure 20.

AVS/Express
This is a software environment for visualization developed by 
Advanced Visual Systems, avs. Development and research started in 
1988. Avs claims that more commercial applications have been devel-
oped with Express than with any other visualization tool. Express 
includes a comprehensive set of visualization modules. Express is 
highly modular, hierarchical and extensible - it is possible to write 
custom modules in c++ and include them in the system.

In its standard version, Express contains more than 850 visualization 
objects. Visualization of 3D data volumes can be made using ray cast-
ing techniques, surface extraction techniques, or both, and geographi-
cal data can be added easily. Express from avs can certainly be used 
for visualization of data from Doppler radar systems. It runs on 
Linux, Unix and Windows platforms but it is a very expensive system 
that has no bindings to Python, the programming language that rave 
is built upon. (Advanced Visual Systems: Software)

IRIS Explorer
iris Explorer was originally developed and distributed by Silicon 
Graphics, Inc. (sgi). Interest in the system grew over the years and 
sgi decided to move iris Explorer to an external independent soft-
ware house. In 1994 the Numerical Algorithms Group (nag) took 
over the development, porting, marketing, sales and support. iris 
Explorer runs on Linux, Unix and Windows platforms. Just like avs, 
it is an extendable but expensive system that lacks support for Python. 
(IEC - Iris Explorer Center)

Figure 20 shows a screenshot from an iris Explorer project.



48 of 76

Figure 20. IRIS Explorer user interface.

IDL, The Interactive Data Language
idl is another system whose main difference from the two described 
above is that more of the development is textual programming, using 
a special high-level scripting language. There is a gui but this is not as 
heavily relied upon as in the previous two systems. idl includes rou-
tines for rendering isosurfaces and for volume rendering. It runs on 
many platforms, including different versions of Unix, Linux and 
Windows. The software is not in the public domain. (IDL - The 
Interactive Data Language)

OpenDX, Open Visualization Data Explorer
OpenDX is the open source version of ibm’s Visualization Data 
Explorer product. OpenDX is based on the last release of Visualiza-
tion Data Explorer, set up to reflect an open source project. There is a 
comprehensive gui with a lot of different modules that can be con-
nected to form a visualization pipeline, as in iris Explorer or avs/
Express. Own modules can also be programmed in c++ and added to 
the pipeline. As in many other open source projects, there is an exten-
sive and enthusiastic user community (Open Visualization Data 
Explorer). OpenDX is a free, open source product with high quality 
and great functionality. Randal Hopper has developed Python bind-
ings for OpenDX, but only basic control is supported; DX executives 
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can be started up and communicated with using Python (Py-
OpenDX).

VIS5D
This free package supports rendering of higher dimension data sets. 
Isosurfaces, volume renderings, coloured slices etc. are possible opera-
tions that can be performed on these data sets. The software runs on 
several platforms and was originally developed to aid in the visualiza-
tion of numerical simulations of the earth’s atmosphere and oceans. 
There is no support for Python. (Vis5D Home Page)

5.1.2 The Visualization Toolkit, VTK
The Visualization Toolkit (vtk) is a free, open source, software sys-
tem for 2D and 3D image processing, computer graphics, and visuali-
zation. Vtk was originally developed as part of a book with the same 
name. Vtk consists of a c++ class library and interpreted interface 
layers for Tcl/Tk, Java, and Python. Vtk supports scalar, vector, ten-
sor, texture, and volumetric methods for visualization and data 
manipulation operations such as polygon reduction, mesh smoothing, 
cutting, contouring, Delaunay triangulation, etc. Vtk basically works 
as the systems mentioned above: a visualization pipeline is created by 
connecting different modules to each other, but the top box in Figure 
19 is absent - there is no graphical user interface. Instead, modules are 
created as objects, typically with SetInput() and GetOutput() 
methods.

5.1.3 3D graphics APIs
Another possible approach is to skip a software layer and use a 3D 
graphics api such as OpenGL or DirectX directly. This, however, 
would greatly increase development time as the wheel would need to 
be reinvented many times, so to speak - several algorithms needed are 
already implemented and tested in all the available visualization pack-
ages. This approach is not very appealing!

5.2 Choice of software
The Visualization Toolkit is free, contains a few hundred well imple-
mented, well documented and tested modules and has working 
Python bindings. The whole package is open source, under constant 
development, and it is certainly possible to add custom modules as 
needed. There is an extensive user community with people using vtk 
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in a vast range of different fields. Not one of the other packages 
described above or known to the author has all these advantages. The 
choice seems simple.

5.3 Software design
As discussed in Chapter 4, several different approaches are possible 
when volumetric data, such as radar data, should be visualized. Iso-
surfaces, cutting planes and vad profiles (see Chapter 3) are examples 
of objects that should all be possible to include in a visualization scene 
- simultaneously. The user should be able to add, manipulate and 
remove objects through a graphical interface.

Python is a language that supports object-oriented programming. By 
using object-oriented techniques, the basic design is quite straightfor-
ward.  It is shown in Figure 21.

Figure 21. Basic system design.

There should be a main graphical user interface class. This is basically 
a window containing the necessary controls to add new objects and to 
adjust global properties (e.g. whether to display height axis, radar 
etc.). This class, called raveVtkMain, is also responsible for commu-
nication with the “old rave”, shown at the top of Figure 21. Polar 
data volumes will be opened as before, through existing interfaces in 
rave. On top of that, it generates a few basic vtk objects from the 
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polar volume. These are used by the visualization objects described 
below.

For each new object, a tab is created in the main window in which 
object specific properties, such as colour, opacity, or elevation angle, 
can be altered through different buttons, menus and sliders. These 
gui components along with event handlers are encapsulated in special 
manager classes - one class for each kind of object. Each manager 
object also has a reference to an actual object, e.g. an isosurface or a 
cutting plane. These objects in turn have references to vtk objects 
and contain object specific methods (e.g. getIsovalue in an isosur-
face object) used by the manager, typically in response to mouse 
events. The vtk objects are collected in a rendering window (not 
shown in Figure 21). A screenshot from the main gui is shown in 
Figure 22. The gui is created through a Python interface, called 
Tkinter, to a gui package called Tk. In the following, the different 
objects are described briefly.

Figure 22. Main GUI screenshot when a few objects have been added.
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5.4 Visualization objects
All visualization object classes are named raveVtkObjectName, e.g. 
raveVtkIsosurface, and they all inherit some basic properties and 
methods from an abstract class simply called raveVtkObject. This 
class includes methods to get and set object description, position, vis-
ibility, opacity, and colouring, among a few other generic operations. 
All objects get their input from the single raveVtkMain instance.

5.4.1 The topography object
Precipitation is heavily affected by the underlying terrain. It is thus 
important that data from a weather radar can be related to the topog-
raphy below it.

An elevation map is a two-dimensional image picturing some geo-
graphic region where each pixel value is the (average) height above sea 
level in the corresponding geographic region. Elevation maps have 
been created for all smhi radars. These maps are squares, each side 
being twice the radar range in length (i.e. 480 km) and with the radar 
positioned at the centre of the map. Using an elevation map together 
with the vtkWarpScalar module, a so-called carpet plot can be gen-
erated. Polygons are generated so that points with higher scalar values 
are raised more than are points with lower values, thus creating a 
three-dimensional terrain map.

For each radar there is also a binary land/water map with the same 
size and resolution as the elevation map. This map is used to colour 
the three-dimensional surface blue where there is water. Where there 
is land, the colour depends on the height above sea level.

In the topography manager, there are controls to change the topogra-
phy’s colouring (“default”, which is a green-yellow-white colour scale, 
or grayscale; in both cases colour varies with the height above sea 
level), to set its opacity and to show or hide it. There can be only one 
topography object in a scene. The topography object for the sur-
roundings of the Kiruna radar is shown in Figure 23, together with 
three other objects presented below.

5.4.2 The radar, bounding box and axis objects
These three objects have no manager classes. Their visibility can be 
controlled through checkboxes in the main gui, and as in the case of 
the topography, there can be only one of these objects at a time.
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The radar object is simply a model of a radome with a foundation, 
shown at the position of the real radar.

The bounding box makes it easier to understand the position of the 
radar data when rotating, zooming and panning.

The height axis provides important height information. This object 
has been designed so that arbitrary axes can be added to the scene, 
should the user want to.

Figure 23. Topography, radar, bounding box, and height axis objects.

5.4.3 The elevation surface object
This is essentially a ppi image (see Section 3.3.1 on page 21) with 
height information added to it: samples from a single elevation angle 
are shown at their positions in space. An example image with an ele-
vation surface object is shown in Figure 3 on page 14. The surface is 
generated by forming consecutive triangle strips where the vertices in 
each triangle are three output samples from the radar, as shown in 
Figure 24. The figure shows a small part of an elevation surface as 
seen from above. In the figure there are twelve samples (black dots): 
four from three different azimuth angles. The first triangle has verti-
ces 1, 2 and n+2, where n is the number of samples along a radar ray. 
All samples in a ray, typically 120, have the same elevation and azi-
muth angles.

A vtkPolyData object can be used to represent geometric structures 
consisting of vertices, lines, polygons, and triangle strips. Point 
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attribute values, e.g. scalars and/or vectors, are also represented. In 
this case, a scalar value for reflectivity is associated to each point and 
this is used for colouring. Colours are interpolated, by the graphics 
hardware, between the vertices. The surface is not discontinuous 
where there is clear air (zero reflectivity return).

The manager of this object, shown as the currently selected object tab 
in Figure 22 on page 51, contains controls to select what elevation 
angle and what azimuth angles (start and range) to use. Note that the 
azimuth span does not have to be 360 degrees - a smaller slice, or sec-
tor, can be shown instead of the whole revolution. These objects can 
be made more or less transparent using an opacity slider.

Figure 24. Creating an elevation surface. Radar as seen from above.

5.4.4 The RHI object
As discussed in Chapter 3, one of the most common 2D products of 
radar data is the cappi image. Another very common product, 
although not implemented in rave until now, is the range/height indi-
cator, or rhi. An example rhi is shown in Figure 25.
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Figure 25. A range/height indicator, or rhi, object, and its manager.

The elevation surface displays data for a single elevation and different 
azimuth angles. This object performs the complementary operation: 
it displays data for a single azimuth and different elevation angles. 
The very same technique is used to generate the actual polygon data: 
triangle strips are created using three neighbouring points to form 
each triangle.

The manager for this type of objects contains controls to select what 
azimuth angle to use and whether or not the rhi 180 degrees from 
this azimuth angle should be disblayed together with it. As with most 
other objects, opacity can be controlled using a slider.

5.4.5 The CAPPI object
This object is a plane parallel to the surface of the earth. Technically, 
it is a texture mapping of a cappi or pseudo-cappi image, described in 
Chapter 3, to a plane at the cappi height. The manager contains a 
slider to select height above sea level and a pair of radio buttons to 
select whether a cappi or a pseudo-cappi should be displayed (see 
Chapter 3). There is also an opacity slider. The colouring of these 
objects is the same as in the case of rhi:s or elevation surfaces: it 
depends on the reflectivity. A cappi object that has been made semi-
transparent is shown in Figure 26.
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Figure 26. A semitransparent CAPPI object and its manager.

5.4.6 The glyphs object
This technique represents reflectivity data by using symbols, or 
glyphs. A glyph is drawn for each reflectivity sample in the volume. 
The colouring depends on reflectivity in the particular point.

Using controls in the manager, the look of the glyphs can be changed. 
Currently, the user can choose from using vertical or horizontal lines 
or 3D crosses, but new glyphs are easily added. Upper and lower 
thresholds for the glyphs can be set; glyphs are drawn only in those 
points where the reflectivity value is between the thresholds. It is also 
possible to choose to display every n:th glyph, where n can be set 
using a slider.

Some glyphs are shown in Figure 27. A still image like this one (espe-
cially when printed!) is difficult to interpret. The user has to rotate 
and pan the image in order to get an idea of the arrangement of sam-
ples. This goes for most of the objects.
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Figure 27. A glyphs object.

5.4.7 The winds object
This is basically a glyphs object, but for Doppler wind volumes only. 
A cone is used for glyphing. The cones are scaled according to the 
wind speeds, and they are directed along the different rays to ade-
quately depict the radial winds that the data represents. The colour of 
the glyphs can be set to vary with reflectivity (taken from the corre-
sponding reflectivity Doppler volume, if available) or with the wind 
speed. As in the case of the glyphs object above, the wind glyphs can 
be scaled, thresholds can be set and the user can choose to show every 
n:th glyph. An example is shown in Figure 28. Glyphs are shown for 
wind speeds between -6 and 6 m/s.

5.4.8 The VAD object
The vad product is described in Section 3.3.5 on page 25. It uses data 
from a Doppler wind scan to create horizontal wind vectors for differ-
ent altitudes. Using this visualization object, the user can choose the 
height interval between the vectors and whether they should be col-
oured according to the wind speed or according to the reflectivity. 
The vectors are represented as arrows or cones, drawn straight above 
the radar’s position. An example vad object is shown in Figure 29.



58 of 76

Figure 28. A winds object, as seen from above.

Figure 29. A VAD object.

5.4.9 The isosurface object
Isosurfaces are generated using the marching cubes algorithm, dis-
cussed in Section 4.6.1 on page 34. The colouring of the isosurfaces 
can either be set to vary automatically with the isovalue, which can be 
adjusted using a slider, or it can be set manually. This is useful when 
several isosurfaces with similar isovalues (and thus similar colours) are 



59 of 76

displayed simultaneously. The opacity of an isosurface can be set 
using a slider - otherwise only the surface with the lowest isovalue 
would be visible. Isosurfaces may look something like the ones in Fig-
ure 30. Here, two isosurfaces are shown, the inner one (brighter) has 
an isovalue of 18.5 dBZ, and the outer one is at 14.5 dBZ and has its 
opacity set to 0.3 in order to reveal the inner one.

Figure 30. Two isosurface objects, with isovalues 14.5 and 18.5 dBZ for 
outer and inner surface, respectively.

5.4.10 The volume rendering object
Volume rendering is discussed in Section 4.7 on page 36. This object 
makes it possible to combine image order volume rendering with the 
different planes, surfaces and glyphs discussed above.

The object is based on a compositing raycaster, where transfer func-
tions can be specified for colour and opacity variations with reflectiv-
ity. The manager of a volume rendering object, shown in Figure 
5.4.11, contains an editable graph, where these piecewise functions 
can be easily altered. Here, a histogram is shown in the background. 
The histogram describes the number of samples with reflectivities in 
different intervals. This may be helpful when designing the opacity 
and colour functions. Opacity varies along the y axis. Each breakpoint 
not only defines an opacity through its y coordinate, but it also defines 
a colour. Opacities and colours are linearly interpolated between the 
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breakpoints. The user can add breakpoints by clicking at the position 
where the points should be added. Once added, a point can be 
dragged or its colour can be changed by first selecting the point and 
then clicking the “Select colour” button. This brings up a colour 
chooser.

Figure 31. The volume rendering manager.

Volume rendering is very slow on computers running at around 500 
MHz. This makes it difficult to navigate in the scene, because it takes 
several seconds to update the display area. Since one ray is cast for 
each pixel, using a smaller window means that not as many rays need 
be cast, thereby reducing rendering time. As the computers keep get-
ting faster, the object will be easier to work with in the future. An 
example of a volume rendering object is shown in Figure 32.
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Figure 32. A volume rendering object.

5.4.11 The radar ray object
The radar ray object draws a ray with elevation and azimuth angles as 
set by the user. The user can choose to view a plot of the reflectivity 
variation along the ray. An example ray is shown in Figure 33.

Figure 33. A radar ray object and its manager.
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6
Evaluation and

conclusions

6.1 Introduction
In the beginning of this project it was very unclear what the final 
result would be like. Little research has been made within the field of 
3D visualization of radar data so it was difficult to know what to 
expect. Thus, different ideas were discussed, different kinds of objects 
were tested in isolation, and the ones that were judged as useful have 
been included in the application. Informal evaluations have been per-
formed during the development and these have gradually set direc-
tions for the following design. In this chapter, some of the thoughts 
and opinions that have arisen during discussions with researchers and 
meteorologists are presented, along with some conclusions that can be 
drawn from the work that this paper has presented. Areas of future 
research and/or extensions are also here.

6.2 Evaluation
In this section, the application’s usefulness and performace are dis-
cussed.

6.2.1 Usefulness
Apart from the use as a research tool for the analysis of exceptional 
weather situations, one of the areas where this application would be 
useful is for weather forecasting around airports. At the end of this 
project, the application will be installed at Arlanda airport, outside 
Stockholm. Weather radars are used extensively around airports as 
one of the most important decision-making tools when creating local, 
short-term forecasts. Both heavy precipitation and strong winds heav-
ily affect the traffic around airports; as we have seen, both may be 
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analyzed using radar technology. The application has been demon-
strated for a meteorologist working at Arlanda and she believed that it 
offers the possibility to extract features from the current weather situ-
ation that are very difficult, if not impossible, to see using the existing 
2D visualization systems. Some of her thoughts about a few objects 
are presented below. Her main thoughts on the application were very 
enthusiastic, and this has lead to the installation of it at her work-
place.

Range/height indicators
The height of precipitation clouds is important information when air-
craft should be routed around airports. This includes the altitude of 
the clouds’ precipitation kernels and their thicknesses. The range/
height indicator is a common 2D product in radar visualization sys-
tems used to investigate just that. In this implemetation, the main 
strength not offered by plain 2D systems lies in the ability to relate 
the rhi geographically to topography, and to other objects (including 
other rhis) in an intuitive way. In the case of plain 2D systems, the 
user has to create a 3D environment him/herself and this is not easy! 
Using 3D technology, the computer takes over the time-consuming, 
difficult task of building the 3D environment.

Basically being a 2D object, its orientation and location in the 3D 
scene provides important extra information.

Isosurfaces
This is an object that takes some time to get used to, as it is a true 3D 

object that has no equivalent in 2D visualization of radar data1. It is 
useful in detecting and displaying the kernels, the areas of the most 
dense precipitation, in clouds. By slowly decreasing the isovalue, the 
isosurface expands and it is possible to see the extent of different pre-
cipitation densities.

For users at smhi and Arlanda, this is a completely new way of exam-
ining weather radar data and the users are enthusiastic.

Radar rays
The radar ray object displays a ray in the 3D view and it is possible to 
display a plot to show how the reflectivity varies along the ray. Choos-

1. The 2D equivalent of isosurfaces is the isoline. This is not used in radar visualization, 
though.
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ing elevation and azimuth angles so that the ray corresponds to a path 
followed by a landing aircraft or one taking off, it is possible to see 
what the aeroplane has to go through in terms of reflectivities.

Nothing similar has been available to meteorologists at Arlanda 
before, and there is good hope that this object, too, will be of great 
usefulness to them.

Volume rendering
In a volume rendering, the user basically has the possibility to view 
the whole echo picture at once. The big problem here is the speed; it 
just takes too long to render an image for the object to be useful. 
When this problem is overcome, there will probably be great use for 
it. In the meantime, the glyphs object can be used instead to provide 
similar products.

6.2.2 Performance
The application performs well, mainly thanks to vtk being a well-
written c++ library, and to hardware accelerated 3D graphics render-
ers. The 3D graphics are rendered at interactive speeds (at least ten 
frames per second) in windows that are some 1 000 x 1 000 pixels in 
size when a modern, though not state-of-the-art, graphics card is 
used. The application has been tested with the two configurations 
shown in Table 2.

The main difference between these two systems is the graphics 
chipset used; in System A, it is based on the three-year-old TNT 
technology, while System B has the GeForce 2 Titanium chipset, 
released during the second half of 2001 from the same manufacturer. 
The difference in performance is quite astounding! Using System A, 
the application is certainly usable, with typical rendering speeds of 
around ten frames per second in large windows, but it is even more so 

Table 2. Two different computer configurations tested with RAVE.

System A System B

Processor 500 MHz Intel Pentium 3 600 MHz AMD K7

Graphics 
chipset

nVidia TNT Ultra 2, 32 MB nVidia GeForce 2 Ti, 64 MB

Memory 256 MB 384 MB
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when using System B; rendering speeds are at least two times the ones 
achieved with System A.

There are two cases when the application shows significant processing 
delays: the first one has been mentioned several times already, and it 
has to do with volume rendering. The calculations are performed 

completely by the cpu; there is no dedicated hardware for this1. Using 
the systems above, there is however a notable difference between Sys-
tem A and System B (i.e. the latter is faster and performs better). As 
of this writing, a new computer has a clock speed of around 1.5 GHz 
and this difference would probably be significant. This exciting test 
remains to be executed.

The second bottleneck originates from Python being terribly slow at 
looping through numeric arrays. This operation is performed the first 
time a vtkPolyData object is generated; data is read from a Python 
array that is created when rave opens a polar volume, the values are 
linearly transformed, and stored in a vtkPolyData object. This loop 
takes around ten seconds - an eternity in front of a computer screen - 
to perform. The good news is that this loop only has to be performed 
once for each type of data (i.e. reflectivity, Doppler reflectivity, or 
wind) and session. The same phenomenon appears when data from a 
whole polar volume needs to be looped through at other times, e.g. 
when creating a histogram. Again, faster computers will partly solve 
this problem. There is also a possibility that future versions of Python 
will replace the unnecessarily slow array handling routines with faster 
ones.

6.3 Future improvements
During this project, some ideas of future research and development 
have arisen. The most important are presented briefly below:

• Spatial animations. The user should be able to create animations 
within a single polar volume, e.g. to set first and last angle of an 
rhi, and to watch it “spin”.

• Temporal animations. The user should be able to open several polar 
volumes from the same location but with different timestamps, and 

1. Actually, vtk supports a line of  (expensive) volume rendering accelerators. These 
would certainly solve the problem of the slow volume renderings, but due to their high 
prices, they have not been considered as an option.
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to manually and automatically step forward and backward in the 
sequence.

• Saving options. The user should be able to save settings; this may 
include saving camera and object settings to a file, but it may also 
include the possibility to store camera positions temporarily during 
a session, i.e. “camera bookmarks”. The user should also be able to 
save the current view as a still image.

• Composites. The user should be able to view data from several 
radars simultaneously.

6.4 Conclusions
The purpose of this work, as stated in Section 1.2 on page 1, was “to 
design and implement a generic, object-oriented application for 3D 
visualization of weather radar data”. The application developed dur-
ing this project is a complete, generic, ready-to-use tool for 3D visual-
ization and analysis of weather radar data.

Compared to the traditional 2D products used by meteorologists 
when analyzing this kind of data, the 3D scenes add information that 
makes it easier for the user to understand the actual depicted weather 
situation.

As of this writing, no formal evaluation of the application has taken 
place. Such an evaluation will be conducted in the near future. The 
first demonstrations and discussions with meteorologists have ren-
dered positive reactions and it is the hope of the author that the appli-
cation will be of great use during many years to come.
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Appendix A
Class diagrams

A.1 Introduction
An overview of the basic design of the application developed during 
this project was given in Section 5.3 on page 50. As described in that 
section, there are two basic subsystems: the graphical user interface 
and the visualization objects. In this appendix there are two class dia-
grams describing the relations, methods and parameters of the differ-
ent classes within these two subsystems.

Three software packages have been used extensively: The Visualiza-
tion Toolkit, which consists of some shared object libraries (written in 
c++) along with Python bindings to access these; Tkinter, which is a 
Python interface to the gui package Tk; and Python MegaWidgets, or 
pmw, which is based on Tkinter and provides higher-level graphical 
user interface widgets, such as tabbed panes and grouped buttons. 

All classes developed during this project are written in the Python 
language. The software runs on Linux but could easily be adapted to 
run on Unix platforms as well.

A.2 Graphical user interface
The class diagram for the graphical user interface classes is shown in 
Figure 34. The raveVtkMain class inherits from the Tk Toplevel 
class. This is an ordinary window. A raveVtkMain instance is cre-
ated from within a Transform3D_GUIPlugin, which in turn is cre-
ated when the rave user chooses to create a ppi, cappi, pcappi, or 
Volume visualization product from the Products menu in the main 
gui (see Section 3.2.1 on page 20).

In the constructor of raveVtkMain, as well as in every other con-
structor in this system, instance variables are set to default values or to 
values specified as arguments to the constructor.
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Figure 34. Graphical user interface class diagram.

When the instance variables have been set, some files are opened: 
polar volumes with reflectivity, Doppler reflectivity, and wind values; 
and elevation and land/water maps for the topography. A thread is 

raveVtkMain
+tabs: Pmw.NoteBook
+showBoxCheck: Tk.Checkbutton
+showAxisCheck: Tk.Checkbutton
+showRadarCheck: Tk.Checkbutton
+showHistogramCheck: Tk.Checkbutton
+addActorOption: Pmw.OptionMenu
+addActorButton: Tk.Button
+getPolyData(voltype:int,azimstep:int,binstep:int): vtkPolyData
+getStructuredPoints(voltype:int,wl:int,h:int,null:int): vtkStructPts
+openDataVolumes()
+initRenderingFrame()
+openVolume(type:int): boolean
+openTopography(): boolean
+openLandWater(): boolean
+getVolume(type:int): rave.pvol
+getTopography(): rave.image
+getLandWater(): rave.image
+hasVolume(type:int): boolean
+hasTopography(): boolean
+hasLandWater(): boolean
+getVolumeInfo(voltype:int): pvol.info
+getAreaId(pvol:rave.pvol): string
+getVads(distance:float): rave.series
+getHistogram(voltype:int): Histogram
+getSlopeAndOrd(voltype:int): float[2]
+getScalarRange(type:int): float[]
+getLookupTable(voltype:int): vtkLookupTable
+getBinsAtElevations(voltype:int): list[float[]]
+getAzimuths(voltype:int): float[]
+getElevations(format:string): float[]
+getClosestElevation(elev:float,voltype:int): float[2]
+getAzimuthResolution(voltype:int): float
+getRangeHeightDistance(elev:float,dplr:boolean): float[][]
+getBoundingBoxPoint(pos:string,km:boolean,dplr:boolean): float[3]
+getBoundingBoxCenter(km:boolean,doppler:boolean): float[3]
+addObject(c:classRef)
+removeObject(desciption:string)
+getObjectsOfType(type:string): raveVtkObject[]
+render()
+chooseColor(): int[3]
+displayErrorDialog(message:string)

Tk.Toplevel

raveVtkManager
+showCheck: Tk.Checkbutton
+opacitySlider (kw): Tk.Scale
+removeButton (kw): Tk.Button
+chooseColorButton (kw): Tk.Button
+lowerThresholdSlider (kw): Tk.Scale
+upperThresholdSlider (kw): Tk.Scale
+getDescription(): string
+getObject(): raveVtkObject
+objectCreatedSuccessfully(): boolean

main

raveVtkObject

vtkActor

raveVtkIsoSurfaceManager
+isoSlider: Tk.Scale
+isoValue: DoubleVar
+autoColorCheck: Tk.Checkbutton

raveVtkTopographyManager
+colorOption: Pmw.OptionMenu

raveVtkRayManager
+azimuthSlider: Tk.Scale
+elevationOption: Pmw.OptionMenu
+newPlotButton: Tk.Button
+getRayData(): float[]

raveVtkElevationSurfaceManager
+azimuthStartSlider: Tk.Scale
+azimuthRangeSlider: Tk.Scale
+elevationOption: Pmw.OptionMenu

raveVtkCappiManager
+heightSlider: Tk.Scale
+typeRadioSelect: Pmw.Radioselect

raveVtkRenderingFrame

+addActor(actor:vtkProp)
+removeActor(actor:vtkProp)
+render()

raveVtkVADManager
+colorRadioSelect: Pmw.RadioSelect
+zSpacingSlider: Tk.Scale

raveVtkGlyphsManager
+glyphLengthSlider: Tk.Scale

Transform3D_GUIPlugin

parent
_vtkMain

raveVtkRhiManager
+azimuthSlider: Tk.Scale
+continueCheck: Tk.Checkbutton

Tk.Toplevel

raveVtkMainInitThread

+run()

raveVtkXYPlotCanvas

+setXvalues(x:float[])
+setYvalues(y:float[])

raveVtkVolumeManager
+histogram: Histogram
+plot: Tk.Canvas
+removePointButton: Tk.Button
+chooseColorButton: Tk.Button
+updateButton: Tk.Button
+updateOpacityAndColor()
+getOpacityAndColorFunctions(): vtkFunction[]
+addPoint(coords:float[2],col:float[3])
+removePoint()
+addLine(fromIndex:int)
+liftPoints()
+getHistogramX(): float
+getHistogramY(): float
+updateEditingFrame()
+getClosestPoint(x:float,y:float,maxDist:float): int
+getBoundsForPoint(item:int): float[4]
+isFirstPoint(item:int): boolean
+isLastPoint(item:int): boolean

raveVtkHistogramManager
+plot: Tk.Canvas
+nodataLabel: Tk.Label
+saveButton: Tk.Button

raveVtkPlotUtilities

+setDecorationColor(col:float[3])
+setPlotColor(col:float[3])
+getX(x:float): float
+getY(y:float): float
+getXvalue(x:float): float
+getYvalue(y:float): float
+savePlot(plot:Tk.Canvas)
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created and started (instance of raveVtkMainInitThread) which 
prepares some common data: vtkPolyData and histograms, for 
instance. The prepared data is handed over to the raveVtkMain 
instance, and this initialization thread destroys itself.

Then the actual graphical user interface is created: buttons and labels 
are added to the window, as well as a tabbed pane to contain the man-
agers that are added with each new object. Event callbacks are associ-
ated with every clickable item. The definitions of the event callbacks 
are in the raveVtkMain class itself or in the manager class to which 
their corresponding widgets belong (they are not included in the class 
diagram, though). Their main function is usually to pass on the call to 
some other method (e.g. addObjectClicked() calls addOb-
ject() with the appropriate arguments).

Next, a raveVtkRenderingFrame instance is created. This is a new 
window to display the 3D graphics. It makes use of a vtkTkRender-
Widget instance. This is a Tk compliant object included with vtk’s 
Python bindings. This class, too, as can be seen in the class diagram, 
inherits from the Tk Toplevel class.

Once the rendering frame has been created, a few objects - topogra-
phy, radar, bounding box, and axis - are created. When the topogra-
phy object is created, a topography manager object (instance of 
raveVtkTopographyManager) is created and a new tab is added to 
the tabbed pane in the raveVtkMain window.

Every time a new manager is created, a reference to the raveVtk-
Main object is passed along to the manager’s constructor. This way, 
the managers are able to use the many methods for generic data han-
dling included in the raveVtkMain class. For instance, it is 
raveVtkMain that creates some fundamental vtk objects useful to 
many of the different visualization objects (the most important 
objects are accessed through getPolyData() and getStruc-
turedPoints()). And since it is raveVtkMain that is responsible 
for file opening, information about the opened files can be requested 
via calls to some specific methods. 

A.2.1 Managers
There is a manager class for each visualization object class. The man-
ager is responsible for creating widgets in the raveVtkMain 
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instance’s tabbed pane. A reference to a newly created tab is passed to 
the manager’s constructor when this is called from raveVtkMain. 
The constructor initializes instance variables and widgets.

There is an “abstract” class1 called raveVtkManager from which all 
the concrete manager subclasses inherit some basic properties. The 
constructors in the concrete manager classes all begin with a call to 
raveVtkManager’s constructor, supplying different keyword argu-
ments to it. Keyword arguments is a powerful Python construct which 
gives the user the possibility to supply different, optional arguments 
to a method, function, or constructor. In this case, the technique is 
used to make it possible for different managers to add different, com-
mon widgets to themselves. For instance, a widget that is included in 
several managers is a “Select colour” button along with a small oval 
displaying the currently selected color for the object. This widget is 
added to a manager by calling the raveVtkManager constructor 
with an argument like colorChooser=4, meaning that the colour 
selection widget should be added at the manager’s grid row number 
four. Several different options like this one are available. This makes 
the sizes of the managers’ implementations quite small, and it is easy 
to create new managers that include some of the most common but-
tons and menus.

Event callbacks to the common widgets are all in the raveVtkMain 
class, but these may be overridden by definitions of methods with the 
same names in the concrete subclasses (so-called dynamic binding). 
Event callbacks to widgets specific for a certain manager class are 
defined in that class.

Each manager creates, at the end of its construtor, an object to be 
assoiciated with it. A raveVtkIsosurfaceManager creates a 
raveVtkIsosurface instance, and so on. These objects are 
described in the next section.

1. Actually, there is no support for abstract classes in Python. It is always possible to create 
instances of every class, but in the case of raveVtkManager, it would  make no 
sense to do so - in its own, it is useless!
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A.3 Visualization objects
This is the second group of classes and the class diagram is shown in 
Figure 35. Again, there is an “abstract” superclass of all objects, sim-
ply called raveVtkObject, that contains some attributes and meth-
ods that are common to all concrete subclasses. These include, for 
instance, the setPosition() and setColor() methods.

Figure 35. Visualization objects class diagram.

All object classes serve as containers for some vtk objects. These 
objects are connected to form a visualization pipeline for each differ-
ent type of object. The pipeline typically starts with data from 
raveVtkMain’s getPolyData() or getStructuredPoints() 
methods, and it always ends with an instance of vtkActor, or one of 
its subclasses, and one of vtkMapper’s subclasses.

raveVtkObject
+description: String
+mapper: vtkMapper
+actor: vtkActor
+getDescription(): String
+getErrorMessage(): string
+getActor(): vtkActor
+getOpacity(): float
+setOpacity(op:float)
+getVisibility(): boolean
+setVisibility(visible:boolean)
+getPosition(km:boolean): float[3]
+setPosition(pos:float[3],km:boolean)
+getLookupTable(): vtkLookupTable
+setLookupTable(lut:vtkLookupTable)
+objectCreatedSuccessfully(): boolean
+getColor(): float[3]
+setColor(c:float[3])
+setUseLutColor(b:boolean)
+setLookupTable(lut:vtkLookupTable)
+setScalarRange(l:float,u:float)
+createActor()
+updateActor()

raveVtkIsosurface
+isoValue: float
+colorUsingLut: boolean
+getIsoValue(): float
+setIsoValue(val:float)
+getColor(): float[3]

raveVtkCappi
+height: float
+typeIsCappi: boolean
+getHeight(): float
+setHeight(offset:float)
+isCappi(): boolean
+isPcappi(): boolean
+setCappi(b:boolean)
+setPcappi(b:boolean)
+setLookupTable(lut:vtkLookupTable,voltype:int)

raveVtkElevationSurface
+elevationAngle: float
+azimuthRange: float
+azimuthStart: float
+setAngles(elev:float,azS:float,azR:float)

raveVtkGlyphs
+scale: float = 1.0
+glyph: vtkPolyData
+setGlyph(val:vtkPolyData)
+getGlyphLength(): float
+setGlyphLength(length:float)
+getThresholds(): float[2]
+setThresholds(l:float,r:float)

raveVtkConstants
+NO_OF_VOLUME_TYPES: int = 4
+ANY: int
+REFLECTIVITY: int
+REFLECTIVITY_DOPPLER: int
+WIND: int
+DIST_UNITS_PER_KM_X: float
+DIST_UNITS_PER_KM_Y: float
+DIST_UNITS_PER_KM_Z: float
+WATER_SCALAR: float
+NODATA_SCALAR: float
+NODATA_WIND_SCALAR: float
+NODATA_COLOR: float[3]
+BACKGROUND_COLOR: float[3]
+CONE: vtkPolyData
+ARROW: vtkPolyData
+HORIZ_LINE: vtkPolyData
+VERT_LINE: vtkPolyData
+CROSS: vtkPolyData
+TOPO_LUT_DEFAULT: vtkColorTransferFunction
+TOPO_LUT_GREY: vtkColorTransferFunction

raveVtkTopography

+setLookupTable(lut:vtkCTrFun)

raveVtkRay
+elevation: float
+azimuth: float
+lowerClip: float
+upperClip: float
+getElevation(): float
+setElevation(elev:float)
+getAzimuth(): float
+setAzimuth(azim:float)

raveVtkRadar
+radius: float
+logofilename: String

raveVtkVAD
+zSpacing: float
+colorByReflectivity: boolean
+getZSpacing(): float
+setZSpacing(space:float)
+setColorToColorByReflectivity()
+setColorToColorByWind()

raveVtkBoundingBox

raveVtkAxis
+point1: float[3]
+point2: float[3]

raveVtkRhi
+azimuth: float
+getAzimuth(): float
+setAzimuth(a:float)
+mergeWithRhi(rhi:raveVtkRhi)

raveVtkVolume
+rcfun: vtkVolumeRayCastCompositeFunction



76 of 76

One of the simplest possible visualization pipelines can be found in 
the raveVtkIsosurface object. It starts with the output from 
raveVtkMain.getPolyData(), adds a vtkMarchingCubes 
object and a mapper and actor. When the object has been created, the 
isovalue can be set using the raveVtkIsosurface.setIso-
value() method, and this is the method that is called when the user 
adjusts the isovalue using the isovalue slider in the manager. This 
method, in turn, calls the SetValue() method of the vtkMarch-
ingCubes instance. All objects basically operate this way: the man-
agers issue calls to the objects due to user interactions with the 
different sliders, menus, and buttons, and the objects pass the calls on 
to some underlying vtk object. Finally, a rerendering is requested 
from the vtkTkRenderwidget instance in order to reflect the 
changes.
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